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1. Introduction

Significant progress has been made in bridge aerodynamics

during the last two decades. That includes theoretical

approaches, wind tunnel tests, and computer software

development for the evaluation of structural response. On

one hand, bridge engineers have better understanding of

bridge aerodynamic stability as well as dynamic response to

turbulent wind. On the other hand, this understanding is

used to maintain unsuitable shapes for long-span cable-

stayed bridges, such as steel I-girders or prestressed

concrete rectangular ribs, for economy. A better alternative

is to develop more stream-lined profiles.

More attention has been given to cable vibrations,

observed for the first time in 1977 in the Brotonne Bridge

in France (figures 1 and 2). While the controversial

phenomenon of vibrations in cable-stayed bridges could

have been easily stopped with the installation of hydraulic

dampers, many other cable-stayed bridges suffered from

similar cable vibrations. These include Ben Ahin and

Wandre Bridges in Belgium, Faro and Oresund Bridges in

Denmark, Glebe Island Bridge in Australia, the Second

Severn Crossing in the UK, Erasmus Bridge in Rotterdam,

the Burlington Bridge in the United States, and several

bridges in Japan. It appeared that many different phenom-

ena can generate cable vibrations. Thorough research

studies were performed in many countries and the cable

vibration phenomenon is now well understood.

The need for a solution to the vibration problem

intensified in light of recent breakage in stay cables at the

Saint-Nazaire bridge in France (figures 3 – 5), and Zarate

Brazo Largo bridge in Argentina. It is the author’s opinion

that these breaks are due to fatigue induced by cable

vibrations.

In this paper, the problem of cable vibrations is handled

from the designer’s point of view. The main reason for this

approach is the lack of sound theories, and the gap that

exists between sophisticated theories and design practices.

It is therefore necessary to generate simplified models that

are readily accessible to a wider base of cable-stayed bridge

designers. Thus, this paper adopts a direct language to

evoke opinions regarding the issues that ought to be

considered in the analysis of cable vibrations, which

developed in some bridges. The paper aims at an honest

presentation of the issues associated with cable vibrations

in cable-stayed bridges.

2. Statics of stay cables

2.1 Linear analysis

In the classical computations performed for the structural

analysis of cable-stayed bridges, each stay cable is modelled

as a straight elastic member between its two anchorages, A

and B (figure 6). The cable length is L, the horizontal

distance between anchorages is ‘, and the vertical distance

is h. The angle between the stay cable and the horizontal is

a, where:

tga ¼ h

‘
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Figure 1. The Brotonne Bridge.

Figure 2. Stay cables of the Brotonne Bridge when

vibrating during construction (photo courtesy of

J. Combault).

Figure 3. The Saint-Nazaire Bridge.

Figure 4. Broken stay cable (32 downstream) at the

Saint-Nazaire Bridge.

Figure 5. Distribution of broken wires at the Saint-

Nazaire Bridge; stay cable 32 downstream.

Figure 6. Model of a stay cable for linear structural

analysis.
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The weight of the stay cable (mg L), where m is the lineic

mass, is introduced, evenly, at the anchorages A and B. The

tension in the stay cable, resulting from the analysis, is

denoted as F. The result is only accurate under permanent

loads if the computations have been performed with a value

of the modulus of elasticity corresponding to the sag effect

in the stay cable for this load case, as shown later.

2.2 The catenary

If the weight of the stay cable is distributed along its length,

the tension varies along the cable. The basic equations are

given by the equilibrium of a differential cable segment

(figure 7). Considering horizontal forces, the horizontal

projection of the cable tension is constant, and is given

by H:

H ¼ FðxÞ cos yðxÞ ð1Þ

Vertical forces give the differential equation:

Fðxþ dxÞ sin yðxþ dxÞ � FðxÞ sin yðxÞ

¼ mg ds ¼ mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðxÞ2

q
dx

Using equation (1), one obtains the following differential

equation:

H
d2y

dx2
¼ mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðxÞ2

q

This leads to the classical catenary shape, given by:

yðxÞ ¼ y0 þ
H

mg
ch

mg

H
x� x0ð Þ

� �

The parameters, x0 and y0, are given by the two anchorage

points, A and B. The first parameter, x0, is given by:

x0 ¼
xA þ xB

2
� H

mg
Arg sh

mgðyB � yAÞ
2Hsh mgðxB�xAÞ

2H

� �
2
4

3
5

¼ ðxA þ xBÞ
2

� H

mg
Arg sh

mgh

2Hsh mg‘
2H

� �
" #

When noting:

K ¼ Arg sh
mgh

2Hsh mg‘
H

� �
" #

�mg xA þ xBð Þ
2H

ð2Þ

the catenary equation can be written as:

yðxÞ ¼ H

mg
ch

mg

H
xþ K

� �
� ch

mg

H
xA þ K

� �h i
þ yA ð3Þ

The vertical distance between the catenary stay cable and

the chord is given by:

fvðxÞ ¼
h

‘
x� xAð Þ � H

mg
ch

mg

H
xþ K

� �
� ch

mg

H
xA þ K

� �h i
ð4Þ

It is maximum for:

sh
mg

H
xþ K

� �
¼ h

‘

that is for:

xm ¼
xA þ xB

2
þ H

mg
Arg sh

h

‘

� �
�Arg sh

mgh

2Hsh mg‘
2H

� �
 !" #

ð5Þ

Many results can be derived from this model, including

the value of the apparent modulus of elasticity of the stay

cable, corresponding to the relation between the increase in

tension and the increase in the distance, L, between the

anchorages produced by loads imposed on the structure.

2.3 Simplified approach

The extreme vertical sag, which can be precisely evaluated

from equations (4) and (5), can be estimated with a

good accuracy from the equilibrium of the lower part of the

cable, between the lower anchorage and mid-span, C,

supposing that the catenary cable is parallel to the chord at

mid-span (figure 8). The resulting moment at A, produced

by the tension at mid-span, F, and by the weight of the

cable has to be equal to zero:

Ffv cos a ¼ mg
L

2
x
L cos a

4Figure 7. Static equilibrium of a catenary cable segment.
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Thus

fv �
mgL2

8F
ð6Þ

The equilibrium of vertical forces, when analysed at both

anchorages and at mid-span, gives:

FA sin yA ¼ F sin a�mgL

2

FB sin yB ¼ F sin aþmgL

2

ð7Þ

This relation demonstrates that the tension at mid-span can

be identified with the result of a classical linear analysis as

described above; thus:

H ¼ F cos a ð8Þ

3. Dynamics of stay cables

3.1 Simplified analysis of natural frequencies

The classical evaluation of cables natural frequencies is

based on a simple model, which considers the cable with a

constant tension F. The equation which governs the

vibration is given by the dynamic equilibrium of a

differential segment of cable (figure 9):

mdx
d2y

dt2
¼ F

d2y

dx2
dxþ fðx; tÞdx

where f(x,t) is the lineic external force produced on the stay

cable at the abscise x, perpendicular to the stay cable, for

example by the wind. This leads to the equation:

m
d2y

dt2
� F

d2y

dx2
¼ fðx; tÞ ð9Þ

The solution for equation (9) is obtained by separating the

variables, x and t. This can be achieved by using the

classical mode shapes written as follows:

yðx; tÞ ¼
Xn
i¼1

sin
ipx
L

� �
yiðtÞ ð10Þ

Thus:

Xn
i¼1

m sin
ipx
L

� �
y00i ðtÞ þ F

ip
L

� �2
sin

ipx
L

� �
yiðtÞ

" #
¼ fðx; tÞ

Multiplying by sin (kpx/L), an integration between 0 and L

gives:

Xn
i¼1

m y00i ðtÞ þ F
ip
L

� �2
yiðtÞ

" #Z L

0

sin
kpx
L

� �
sin

ipx
L

� �
dx

¼
Z L

0

sin
kpx
L

� �
fðx; tÞdx

where

Z L

0

sin
kpx
L

� �
sin

ipx
L

� �
dx ¼ 0 8i 6¼ k and

Z L

0

sin
kpx
L

� �� 	2
dx ¼ L

2

The dynamic equation for mode k becomes:

y00kðtÞ þ
kp
L

� �2
F

m
ykðtÞ ¼

2

mL

Z L

0

fðx; tÞ sin kpx
L

� �
dx ð11Þ

The pulsation for mode k is given by:

ok ¼
kp
L

ffiffiffiffi
F

m

r
ð12Þ

and thus the period is given by:

Tk ¼
2L

k

ffiffiffiffi
m

F

r
ð13Þ

Figure 8. Definition of stay cable vertical sag.

Figure 9. Dynamic equilibrium of a stay cable segment.
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The generalised external force is expressed by:

fkðtÞ ¼
2

mL

Z L

0

fðx; tÞ sin kpx
L

� �
dx ð14Þ

Adding damping to equation (11) results in the following

form:

y00kðtÞ þ 2okxky
0
kðtÞ þ o2

kykðtÞ ¼ fkðtÞ ð15Þ

where xk is the damping coefficient in mode k (ratio to

critical).

These results are valid for all transverse vibrations of stay

cables, as well as ‘vertical’ (in the vertical plane of the stay

cable) or ‘lateral’ (perpendicular to the vertical plane of the

stay cable).

3.2 Forces produced in the deck by cable vibrations

It is necessary to understand the influence of a stay cable

vibration on the deck. As the cable sag has an influence at

least on the first mode, one has to approach its shape with a

sinusoidal formula, as follows:

y0ðxÞ ¼ �f sin
px
L

� �

where f, the transverse sag, shown in figure 10, is given by:

f= fv cos a.

The cable vibration on mode k is given from its

equilibrium position by:

yðx; tÞ ¼ Ak sin
kpx
L

� �
sin ðoktÞ

The derivate of the above relationship is given by:

y0ðx; tÞ ¼ kp
L

Ak cos
kpx
L

� �
sin ðoktÞ

whereas the distance from the chord is written as:

dðx; tÞ ¼ Ak sin
kpx
L

� �
sin ðoktÞ � f sin

px
L

� �
The cable vibration has two effects. First, it produces a

change in the cable inclination at its lower anchorage (for

x=0), changing the vertical effect of the cable tension on

the deck:

DV ¼ kp‘
L2

FAk sin ðoktÞ ð16Þ

In addition, it produces a length variation which is given

by:

DL ¼
Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y0ðx; tÞ½ �2

q
dx�

Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ y00ðxÞ�

2
q

dx

A first-order approximation for the length variation, for all

modes k4 1, is:

DL ¼ kp2ðAk sinðoktÞÞ
4L

2

ð17Þ

whereas, for k=1, the length variation is given by:

DL ¼ p2

4L
A2

1 sin
2ðoktÞ � 2A1 f sinðoktÞ

� �
ð18Þ

The vibration corresponds to a shortening when the cable

moves upwards, and to an extension when it moves

downwards. In all situations, the length variation produces

a tension variation and from there a variation in the cable

vertical action on the deck. The resulting global variation in

the vertical cable action on the deck, for any mode k greater

than one, is given by:

DV ¼ kp‘
L2

FAk sinðoktÞ þ
kp2h
4L3

ESA2
k

1� cos ð2oktÞ
2

� �
ð19Þ

where E is the modulus of elasticity of the cable, and S is

the area of its cross section.

It can be seen that the first term, which corresponds to

the change in the cable inclination, varies with the same

pulsations ok as the cable vibrates. The second term, which

comes from the length variation, varies with a pulsation

2ok, that is, with a period which is only half the period

of the cable vibration. There is a critical value of the

Figure 10. Definition of the vibration from equilibrium

with the sag effect.
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amplitude, independent from the order k, below which the

first term is predominant, and above which the second term

is more important. The critical value of the amplitude, Akcr,

is given by:

Akcr ¼
4L‘

ph
F

ES
ð20Þ

At the Erasmus Bridge in Rotterdam, the critical amplitude

of cable vibration is 0.68 m for cable 10 and 1.00 m for

cable 13. These values are higher than the reasonable values

for mode 2 and above. The same example can give an idea

of practical forces; for mode 2 and an amplitude of 0.50 m,

the extreme vertical force on the deck (combining the two

terms) is 42 kN for cable 10 and 35 kN for cable 13.

For mode one (k=1), the resulting vertical action is

slightly different, where:

DV ¼ p‘
L2

F� p2h
2L3

ESf

� 	
A1 sinðo1tÞ

þ p2h
4L3

ESA2
1

1� cos ð2o1tÞ
2

� �
ð21Þ

Once again, one term varies with the same frequency as the

cable vibration, but a part of it also comes from the effects

of length variations, while the other one has half of the

period. An amplitude of 1.0 m at the Erasmus Bridge

produced an extreme vertical force of 127 kN for cable 10

and 109 kN for cable 13. These results show that significant

cable vibrations can produce high vertical lift forces on the

deck, to the extent of exciting structural vibrations. It is

worth noting that uncorrelated vibrations of different

cables cannot have significant effects. In other words, cable

vibrations must be correlated to produce a significant

excitation in the whole structure.

3.3 Work to produce the extreme transverse

displacement

To evaluate the work, DW, which is transferred to the stay

cable, from the equilibrium position, y0(x), to the situation

corresponding to the extreme upwards deflection for any

mode k, y(x), one writes:

y0ðxÞ ¼ �f sin
px
L

� �

yðxÞ ¼ Ak sin
kpx
L

� �

The amount of work is given by:

DW ¼ DWint � DWext

where DW int
is the deformation work of the cable produced

by its elongation, and DW ext
is the work of the external

forces limited to the cable weight. The deformation work is

evaluated by:

DWint ¼ FDLþ 1

2
DFDL ¼ FDLþ 1

2

ES

L
DL2

For any mode k the external work is given by:

DWext ¼ �
Z L

0

Ak sin
kpx
L

� �
mg cos a dx

¼ � 2mgL cos a
kp

dkAk

where dk is equal to zero when k is even (2, 4, 6, . . .) and is

equal to one when k is uneven (1, 3, 5, . . .).

According to equation (17), for a mode k greater than

one, when the extreme amplitude is reached:

DL ¼ kp2A2
k

4L

Thus the global work is given by:

DW¼ 2mgL cosa
kp

dkAk þ
kp2F
4L

A2
k þ

1

2

ES

L

kp2

4L

� �2
A4

k ð22Þ

It is clear that the existence of a factor with Ak for uneven

modes (3, 5, 7, . . .) is incorrect and just shows that sag

effects still have some influence on the vibrations for these

modes.

For the first mode, using equation (18), when the

amplitude is extreme:

DL ¼ �
p 2fA1 � A2

1

� �
4L

so that the global work can be written as:

DW ¼ 2mgL cos a
p

A1 �
p2F
4L

2fA1 � A2
1

� �

þ 1

2

ES

L

p2

4L

� �2
2fA1 � A2

1

� �2
since one cannot have a factor A1, the sag, f, is given by:

f ¼ 4mgL2 cos a
p3F

This is not much different from the previous estimate,

derived from equation (6):

f � mgL2 cos a
8F

, with
p3

4
¼ 7:7516 � 8

One can conclude that the expression

DW ¼ p2F
4L

A2
1 þ

1

2

ES

L

p2

4L

� �2
2fA1 � A2

1

� �2 ð23Þ

is a good approximation of the work.
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3.4 More precise approach of the first

natural frequency

Consider again a cable vibrating vertically in the first mode,

with sag effects. Its typical position is given by:

yðx; tÞ ¼ sin
px
L

� �
A1 sino1t� f½ �

where the velocity is expressed by:

vðx; tÞ ¼ A1o1 sin
px
L

� �
coso1t

The equation of the kinetic energy between the equilibrium

position, where the cable has its extreme velocity

vðxÞ ¼ A1o1 sin
px
L

� �
and the extreme upwards position where the velocity

decreases to zero, is limited to:

DWext ¼ DCþ DWint

Rearranging the above relationship results in the

following expression:

�DC ¼ DWint � DWext ¼ DW

The above is another form of equation (23). Since the

variation of the kinetic energy can be written:

DC ¼ � 1

2

Z L

0

m A1o1 sin
px
L

� �� �2
dx ¼ �o2

1mL

4
A2

1;

re-using equation (23), the equation of the kinetic energy

renders:

o2
1mL

4
A2

1 ¼
p2F
4L

A2
1 þ

1

2

ES

L

p2

4L

� �2
2fA1 � A2

1

� �2
The identification of the terms of the second order (A2

1)

gives an evaluation of o1:

o2
1 ¼

p2F
mL2

þ ES

mL2

p2

2L2
f 2

The period, T1, is given by:

T1 ¼ 2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

F 1þ ES
F

p2f 2
2L2

� �s
ð24Þ

The results given by equation (24) were compared to those

computed by the traditional evaluation, using equation (13),

and also with the finite element analysis performed by for the

longer cable of the Normandie Bridge (Morisset and Riché

1994), for two different values of the cable tension. Table 1

demonstrates theaccuracyof the evaluationbyequation (24),

in seconds, compared with the finite element analysis and

equation (13), which is still valid for lateral vibrations.

4. Aerodynamic forces on stay cables

4.1 Drag coefficient of cable ducts

The drag force on a cable is given by:

Fd ¼
1

2
rU2DCd ð25Þ

where r is the air density (1.23 kg m–3), U is the wind

velocity, D is the cable diameter and Cd is the drag

coefficient. For a classical cylinder, the coefficient is high

for the small values of the wind velocity, or the Reynolds

number, which is given by

Re ¼
UD

n
ð26Þ

where n is the air viscosity equal to 1561076 in the MKSA

system; the drag coefficient is equal to about 1.20 in this

undercritical domain. For a critical value of the Reynolds

number which varies between 26 105 and 56105, depend-

ing on the duct rugosity, the drag coefficient drops down to

about 0.60 or 0.50 in the domain of the overcritical values

of the Reynolds number, and even lower. For higher values

of the Reynolds number, the drag coefficient increases and

reaches a stable value in the hypercritical domain which

depends on the duct rugosity (figure 11). Classical stay

Table 1. Comparison of the evaluation of the first vertical
vibration period, in seconds, by three methods.

Method of analysis F=260 kN F=4090 kN

Computation (A. Morisset

and Ch. Riché 1994)

3.63 3.43

Evaluation (equation (24)) 3.632 3.432

Traditional evaluation

(equation (13))

4.600 4.133

Figure 11. The drag coefficient of a classical duct as a

function of the Reynolds number and of the duct rugosity

(from CSTB).
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cables are generally in the overcritical domain for extreme

winds, but the drag coefficient may increase for more

frequent winds, around 10 m s71, which may be in the

undercritical or critical domain. Wind forces are frequently

computed with a value of 0.70 (or even 0.80 in very

conservative analyses) to cover uncertainties due to the

evolution of rugosity with time. For the Normandie Bridge,

the author evaluated the global effects with a value of 0.65

considering that all cables could not be in unfavourable

conditions at the same time (Virlogeux 1992). It should be

noted that drag forces on stay cables are of more

significance for long-span cable-stayed bridges, as the wind

forces on the deck are reduced to very low values by an

efficient streamlining. For instance, about 55% of the

horizontal bending moment (vertical axis) in the box-girder

superstructure of the Normandie Bridge, at its connections

to the pylons, were produced by wind forces on stay cables

and only 45% by wind forces on the box-girder itself

(Virlogeux 1996). Modern stay cables are confined in ducts,

or pipes, which receive some shaping designed to reduce the

risk of rain and wind-induced cable vibrations as will be

demonstrated later in this paper. This shaping evidently

influences drag effects and has to be considered.

Figure 12 shows the first shaped pipe in high-density

polyethylene (HDPE), provided with longitudinal ribs to

channel water downwards. It has been installed on the

Higashi-Kobe Bridge, in Japan. The deep channels

increased the drag coefficient of a classical cylinder from

0.50 – 0.60 to 1.30. Figure 13 shows the solution developed

for the Normandie Bridge, which is patented by Freyssinet

and re-used in all its later applications. The HPDE

ducts are equipped with two imbricated helical filets, about

1.6 mm deep, having a pitch length of 60 cm each.

Figure 14 gives the results of the first wind tunnel tests,

performed by the CSTB at Nantes for the Normandie

Bridge. Results have been reported in (Virlogeux 1998a,

1998b) with an error in the legend which is corrected here.

The helical filets were 1.3 mm deep in the test, but the

bridge has been erected with filets 1.6mm deep.

Figure 15 gives the results of new wind tunnel tests

performed by the CSTB in August 2003. The figure shows

Figure 12. A duct from the Higashi-Kobe Bridge.

Figure 13. A recent pipe for a Freyssinet stay cable, with

two imbricated helical filets.

Figure 14. Drag coefficients measured by the CSTB with

different profiles for the Normandie Bridge.
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the drag coefficients measured on three HDPE pipes, 20 cm

in diameter, a classical smooth cylinder without shaping

(the drag coefficient drops down to 0.49 in the critical

domain); a cylinder equipped with one helical filet (the

CSTB has estimated the filet depth to 1.5mm; whereas it is

in fact 1.6mm deep; the pitch length is equal to 60 cm); and

a cylinder corresponding to the typical Freyssinet design

with two imbricated helical filets (of the same type). In the

latter case, the drag coefficient is more uniform, ever lower

in the undercritical domain, varying from 0.57 to 0.61 with

a minimum value of 0.55 for Reynolds numbers varying

from 272,000 to 736,000.

Figure 16 displays the results of the wind tunnel tests,

performed for the Stonecutters Bridge (Kwork and Wong

2004). The smooth duct gives very low results (about 0.35,

the figure is not precise enough to give a more accurate

value), and the selected duct equipped with dimples gives a

value of about 0.65. The results given for helical filets are in

disagreement with those obtained by the CSTB the author

has seen the tested ducts at Tonji University. The filets were

2 and 4mm deep instead of 1.5 – 1.6mm for the CSTB tests,

and with a very different shape. The filets tested for the

Stonecutters Bridge are circular; while those provided for

the Freyssinet ducts have a rectangular shape with rounded

upper angles. This large difference in shape might explain

the difference in the drag coefficient, between 0.6 and 0.8.

Considering the large influence of shapes, even with

different distributions of dimples as shown by the Stone-

cutters tests, it is clear that the tests should be made on the

ducts provided by the supplier himself. Additionally,

comparative tests should be made in the same laboratory,

or by two or three series of tests made in two or three

laboratories to eliminate all uncertainties.

4.2 Wind forces on a stay cable

In this section, the forces produced, on an inclined stay

cable, by a horizontal oblique wind with an average

velocity U, are analysed. The inclined stay cable is located

in the vertical plane O X Z (figure 17). The cable inclination

is noted by a, and the notation b is the angle of azimuth.

The unit vectors I, J, K correspond to the three axes, t is the

unit vector along the cable in the vertical plane, n the vector

perpendicular to t in this plane, i the unit vector in the wind

direction, and j the horizontal unit vector perpendicular to

i, and the following relationships hold:

T ¼ ðcos a; 0;�sin aÞ; n ¼ ðsin a; 0; cos aÞ;
i ¼ ðsin b; cosb; 0Þ; j ¼ ð�cos b; sinb; 0Þ

With the classical definition of wind turbulence (figure 18),

the wind instantaneous velocity is given by:

V ¼ ðUþ uÞiþ v jþ wK ð27Þ
Thus:

V ¼ ½ðU ¼ uÞsin b� v cosb; ðUþ uÞ cos bþ v sin b;w�
ð28Þ

Figure 15. Drag coefficients of three HDPE pipes; a

typical cylinder; a cylinder equipped with one helical filet,

and a cylinder provided with two helical filets.

Figure 16. Drag coefficients measured on profiles with

dimples (Kwork and Wong 2004).
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This leads to the following result:

V2 ¼ ðUþ uÞ2 þ v2 þ w2 ¼ ðUþ uÞ2

Eliminating terms of the second order, one obtains:

V ¼ Uþ u

The ‘lateral’ displacement, along OY and J, and the

‘vertical’ displacement, along n, produce a modification of

the unit vectors, (t,J,n), which become (t*,J*,n*). For

simplification, the vectors (t*,J*,n*) will be assimilated to

(t,J,n), considering that the major effects of the cable

movements come from the influence of the cable velocity:

Vcable ¼ vJJþ vnn

The wind relative velocity can then be written:

VR ¼ V� vJJ� vnn ð29Þ
In the O X Y Z axes:

VR ¼ ½ðUþ uÞ sin b� v cosb� vn sin a; ðUþ uÞ cosb
þ v sin b� vJ;w� vn cos a� ð30Þ

From equation (29), neglecting terms of the second

order, one obtains:

V2
R ¼ V2 � 2vJV:J� 2vnV:n

Thus:

VR ¼ Uþ u� vJ cosb� vn sin a sinb ð31Þ

The unit vector along VR, noted as k, is given by:

k ¼

sin b� v

U
� vJ

U
sinbþ vn

U
sin a cosb

h i
cos b

cos bþ v

U
� vJ

U
sinbþ vn

U
sin a cosb

h i
sinb

w

U
� vn

U
cos a

8>>>>><
>>>>>:

ð32Þ

4.3 A simplified approach for wind forces on a stay cable

Wind effects are assumed quasi-stationary; that is to say

that at any given time, wind forces are the same as those

produced by a permanent wind, which has a velocity equal

to the instantaneous velocity at that particular time. This is

Figure 17. Definition of notations.

Figure 18. Definition of turbulent wind and cable movement.
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a reasonable assumption due to the very limited size of the

cable compared with the distance crossed by the wind

during a time corresponding to the cable vibration period,

at least for the main modes.

A traditional and simplified approach consists in assum-

ing that wind forces are given by the projection of the wind

relative velocity on the (J,n) plane which is perpendicular to

the cable. The projection of the wind relative velocity on the

cable direction is assumed to have no effect.

Since the system (t*,J*,n*) is assimilated to(t,J,n), one

can write:

Vperp ¼ ðVRJÞJþ ðVRnÞn

Using equations (26) and (30) renders:

Vperp ¼ ½ðUþ uÞ cosbþ v sinb� vJ�Jþ ½ðUþ uÞ sin a sin b
� v sin a cosbþ w cos a� vn�n

ð33Þ
Neglecting terms of the second order, equation (33) gives:

V2
perp ¼ ðUþuÞ2ðcos2bþ sin2asin2bÞþ2Uv cos2a cosb sinb

þ2Uw cosa sina sinb�2UvJ cosb�2Uvn sina sinb

Noting:

D ¼ cos2bþ sin2a sin2b

¼ sin2aþ cos2a cos2b

¼ 1� cos2a sin2b ð34Þ
one obtains:

Vperp ¼ ðUþ uÞ
ffiffiffiffi
D
p
þ v cos2a cosb sinbffiffiffiffi

D
p

þ w cos a sin a sin bffiffiffiffi
D
p � vJ cosbffiffiffiffi

D
p � vn sin a sinbffiffiffiffi

D
p ð35Þ

The average perpendicular velocity can be written (figure 19)

Uperp ¼ U cos b JþU sin a sinb n ð36Þ
with

Uperp ¼ U
pðcos2bþ sin2a sin2bÞ ð37Þ

and the angle of incidence of the average perpendicular

wind velocity is given from equations (36) and (37) by:

sin i0 ¼
sin a sinbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2bþ sin2a sin2b
q ð38Þ

Noting by r the unit vector along Uperp and q the per-

pendicular unit vector, one has the expressions for r and q:

r ¼ cosbffiffiffiffi
D
p Jþ sin a sinbffiffiffiffi

D
p n; q ¼ � sin a sin bffiffiffiffi

D
p Jþ cosbffiffiffiffi

D
p n

ð39Þ

By definition q is equal to tr. Then, the following product is

expressed as:

Vperp:q ¼ �
v sin affiffiffiffi

D
p þ w cos a cosbffiffiffiffi

D
p þ vJ sin a sinbffiffiffiffi

D
p � vn cosbffiffiffiffi

D
p

It is concluded that the angle of attack of the relative and

instantaneous wind velocity is given by:

i¼ i0 þDi

¼ i0 þ
�v sinaþw cosacosbþ vJ sina sinb� vn cosb

Uðcos2bþ sin2a sin2bÞ
ð40Þ

The unit vector along Vperp is written as:

r� ¼ 1ffiffiffiffi
D
p

�
cosbþ

�
v

U
sin a� w

U
cos a cos b

� vJ
U
sin a sinbþ vn

U
cosb

�
sin a sinb

D

	
J

þ 1ffiffiffiffi
D
p

�
sin a sinb�

�
v

U
sin a� w

U
cos a cosb

� vJ
U
sin a sin bþ vn

U
cosb

�
cos b
D

	
n ð41Þ

The vector perpendicular to r* in the (J,n) plane is equal

to tr*:

q� ¼ 1ffiffiffiffi
D
p

�
� sin a sin bþ

�
v

U
sin a� w

U
cos a cos b

� vJ
U
sin a sinbþ vn

U
cosb

�
cosb
D

	
J

þ 1ffiffiffiffi
D
p

�
cos bþ

�
v

U
sin a� w

U
cos a cosb

� vJ
U
sin a sin bþ vn

U
cosb

�
sin a sin b

D

	
n ð42Þ

Figure 19. Average perpendicular wind velocity in the

(J,n) plane.

Cable vibrations of cable-stayed bridges 143



This can also by written as:

r� ¼ r�
�

v

U
sin a� w

U
cos a cosb

� vJ
U
sin a sinbþ vn

U
cos b

�
q

D

q� ¼ qþ
�

v

U
sin a� w

U
cos a cosb

� vJ
U
sin a sinbþ vn

U
cosb

�
r

D

8>>>>>>>>>><
>>>>>>>>>>:

ð43Þ

The cable being a circular cylinder with a diameter D, the

expression for wind forces can be written as:

F ¼ 1

2
rCd DVperp Vperp ð44Þ

where Cd is the classical drag coefficient of the cable, and

the wind force can be developed as follows:

F ¼ 1

2
rCd D

ðUþ uÞ2cosb
ffiffiffiffi
D
p

þ vU sinb½sin2aþ 2 cos2a cos2b�ffiffiffiffi
D
p

þwU cos a sin a cosb sin bffiffiffiffi
D
p

� vJ U½2 cos2bþ sin2a sin2b�ffiffiffiffi
D
p

� vn U sin a cosb sinbffiffiffiffi
D
p

2
66666666666666664

3
77777777777777775

J

þ 1

2
rCd D

ðUþ uÞ2sin a sinb
ffiffiffiffi
D
p

� vU sin a cosb½1� 2 cos2a sin2b�ffiffiffiffi
D
p

þwU cos a½cos2bþ 2 sin2a sin2b�ffiffiffiffi
D
p

� vJU sin a cosb sinbffiffiffiffi
D
p

� vnU½cos2bþ 2 sin2a sin2b�ffiffiffiffi
D
p

2
666666666666666664

3
777777777777777775

n

ð45Þ

The validity of the evaluation can be validated by a classical

test which gives the wind forces on a horizontal cylinder

(a=0) in the (i, j) axes, through the ratios:

Fi

1
2rU

2Cd D
and

Fj

1
2rU

2Cd D

For a uniform wind (v=w= vj= vn=0); and for a

horizontal stay cable (a=0), equation (45) is reduced to:

F ¼ 1=2rU 2Cd D cos2b

J ¼ 1=2rU 2 Cd D½cos3b iþ cos2b sinb j�

Figure 20 demonstrates the excellent agreement of the

approximation.

4.4 An alternative approach for wind forces

on a stay cable

The cable, a circular cylinder, is symmetrical with respect to

any plane containing the vector, t, and the wind flow is

governed by the vector i for the average wind velocity, or k,

for the instantaneous wind velocity. It is then clear that the

wind flow around the cable is symmetrical with respect to

the plane containing the vectors, i (k) and t. Assuming, as a

first approximation, that the flow is bidimensional, one can

analyse the wind profile in any plane containing the vector i

(k) and the unit vector perpendicular to the plane contain-

ing i (k) and t. If the analysis is limited to the average wind,

this unit vector is the vector q already given earlier as tr.

One can write that:

i ¼ Atþ Br

Thus:
t^i

t^ij j
¼ t^ Atþ Brð Þ

t^ Atþ Brð Þj j ¼ t^r

The angle j between the cable axis, t, and the wind velocity,

i, is given by (figure 21):

cosj ¼ t i ¼ cos a sinb ð46Þ
The cable apparent profile in the wind, in the plane (i, q), is

elliptical with a short diameter D and a long diameter E, as

shown in figure 22:

E ¼ D

sinj
¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2bþ sin2a sin2b
q ð47Þ

The angle of attack is equal to zero:

i ¼ 0 ð48Þ
The same result is obtained with the relative wind

velocity by the definition of the unit vector q*, perpendi-

cular to t and k, which is mentioned earlier, as tr*.

The angle, j*, between the cable axis, t, and the wind

relative velocity, k, is given by:

cosj� ¼ t: k ¼ sin b� v

U
� vJ

U
sinbþ vn

U
sin a cosb

h i
cos b

ð49Þ

Finally, one obtains the same result, the apparent angle of

attack is at any time equal to zero, regardless of the

variations of the components of wind turbulence and

cable movements. The apparent profile constantly changes

with these variations and movement; it is elliptical with a

short diameter still equal to D and a long diameter, E*,

given by:

E� ¼ D

sinj�
¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2j�
p ð50Þ
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It is important to locate the projections of the vectors k and

n in the plane (i,q). Since ik is equal to zero, the projection

of k is along q, which appears as ‘vertical’, and one can

write:

k:q ¼ cos a cosbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2bþ sin2a sin2b

q ð51Þ

As for n, the following expression is written:

n:i ¼ sin a sin b; n:q ¼ cosbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2bþ sin2a sin2b

p

The projection of n can be given by the angle g with the

vector q:

tgg ¼ sin a sin b
cosb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2bþ sin2a sin2b

p
ð52Þ

A tentative evaluation of wind forces through a drag

coefficient corresponding to the apparent elliptical profile

would be misleading since the drag force is not in the wind

direction, but perpendicular to the stay-cable axis, t. The

drag forces correspond to the integration of pressure forces

on the stay cable surface, which are individually perpendi-

cular to the stay cable axis when viscosity is neglected.

It is worth noting that, in fact, the wind flow is not

bidimensionnal. There is a deviation of the flow along the

cable axis. However, this result does not change the fact

that the flow is symmetrical with respect to the (t,k) plane;

Figure 20. Classical test for oblique winds.

Figure 21. Definition of the angle j.

Figure 22. Wind velocity in the plane (i,q).

Cable vibrations of cable-stayed bridges 145



even with a deviation along t, the angle of attack is equal to

zero as well as the lift force.

5. Damping of stay cables

5.1 Internal damping

The internal damping of stay cables depends, greatly, on

the cable technology. All the values given below are ratio to

critical. The logarithmic decrement is obtained by multi-

plying these values by 2p=1� x.
In the Saint-Nazaire Bridge, which has locked coil cables

with a hardening product between the wires, the damping

coefficient is 0.1%. In the Brotonne Bridge, with cables

made of parallel strands injected with cement grout in a steel

pipe, the damping coefficient is 0.01%. In the Seyssel Bridge,

with locked coil cables with amorphous polyethylene

between wires, the damping coefficient is 0.05%. In the

Second Severn crossing, with parallel auto-protected

strands in external polyethylene duct, the damping coeffi-

cient ranged from 0.1 to 0.6% according to test results,

which are surprisingly high. In the Vasco de Gama Bridge,

in Lisbon, also with parallel auto-protected strands in

external polyethylene duct, the measured damping coeffi-

cient is about 0.13%. In the Erasmus Bridge, with parallel

auto-protected strands in external polyethylene duct, the

damping coefficient has been estimated as 0.2%. Finally, in

the Iroise Bridge over the Elorn River, with cables made of

parallel galvanised strands injected with oil wax in a

polyethylene duct, the damping coefficient is 0.14%.

The following damping values are considered:

. Injection with cement grout: 0.01%.

. Locked coil cables: 0.1%.

. Parallel individually protected strands: 0.1 – 0.15%.

. Parallel strands injected with oil wax: 0.15%.

It should be noted that measures have to be made when

there is no wind, to eliminate aerodynamic damping.

5.2 Aerodynamic damping for transverse winds

Starting with a simple approach, assume that the wind is

perpendicular to the bridge. In other words, perpendicular

to the plane O X Z, that is for an azimuth angle, b, equal
to zero (figure 23). When the cable moves in the wind

direction with a velocity, vJ, the relative velocity is (U – vJ)

and the wind force is given by:

F ¼ 1

2
rðU� vJÞ2DCd ¼

1

2
rU 2DCd � rUDCdvJ

whereas the damping force is expressed by:

f ðx; tÞ ¼ �rUDCdvJðx; tÞ

As shown earlier:

yðx; tÞ ¼
Xn
i¼1

sin
ipx
L

� �
yiðtÞ

thus:

vJðx; tÞ ¼
Xn
i¼1

sin
ipx
L

� �
yiðtÞ

From equation (14), the generalised damping force

corresponding to mode k, can be evaluated as:

fkðtÞ ¼ �
2

mL

Z L

0

rUDCd sin
kpx
L

� �� 	2
dx y0kðtÞ

¼ �rUDCd

m
y0kðtÞ

Referring to equation (15), the damping coefficient in mode

k (ratio to critical) for ‘lateral’ vibrations is given by:

xk ¼
rUDCd

2mok
ð53Þ

where ok is the pulsation of the stay cable in mode k.

When the cable moves ‘vertically’, that is in the vertical

plane O X Z, with a velocity vn, the apparent angle of

incidence is (7vn/U), and the wind force is given by:

Fn ¼
1

2
rU2DC‘ðiÞ ¼

1

2
rU2D

dC‘

di
ðoÞi

Finally:

Fn ¼ �
1

2
rU2DCd

vn
U
¼ � 1

2
rUDCdvn

The damping force is written as:

fðx; tÞ ¼ �1=2rUDCdvnðx; tÞ

Figure 23. Wind perpendicular to the bridge.
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As shown above, the generalised damping force corre-

sponding to mode k is evaluated as:

fkðtÞ ¼ �
2

mL

Z L

0

1

2
rUDCd

� 	
sin

kpx
L

� �� 	2
dx y0kðtÞ

¼ �rUDCd

2m
y0ktðxÞ

Thus the damping coefficient in mode k (ratio to critical)

for ‘vertical’ vibrations:

xk ¼
rUDCd

4mok
ð54Þ

The damping coefficient given by equation (54) is only half

of the value that results from equation (53). This explains,

at least partly, the fact that cables are generally more prone

to ‘vertical’ than to transverse vibrations.

5.3 Aerodynamic damping for oblique winds

From the results of section 4.3, the aerodynamic damping

coefficients in oblique winds can be evaluated. From

equation (45), the damping force corresponding to ‘lateral’

cable vibrations is equal to:

Fðx; tÞ ¼ � 1

2
rCdDU

2cos2bþ sin2a sin2b
cos2bþ sin2a sin2b

� �
vJðx; tÞJ

Following the same principles as in section 5.2, the

damping coefficient that corresponds to mode k as a ratio

to critical is given by:

x ¼ rUDCd

4mok

2cos2bþ sin2a sin2b
cos2bþ sin2a sin2b

� �
ð55Þ

For vertical vibrations, one obtains:

Fðx; tÞ ¼ � 1

2
rCdDU

cos2bþ 2 sin2a sin2b
cos2bþ sin2a sin2b

� �
vnðx; tÞn

This force corresponds for mode k to a damping coefficient:

x ¼ rUDCd

4mok

cos 2bþ 2 sin2a sin2b

cos 2bþ sin2a sin2b

� �
ð56Þ

When the azimuth angle, b, is equal to zero, equations (55)

and (56) are reduced to equations (53) and (54).

6. Cable vibrations

Many factors and phenomena can produce cable vibra-

tions, therefore a careful and extensive analysis is needed.

At the same time it is necessary to classify the different

causes of cable vibrations as demonstrated in the following.

6.1 Vortex shedding

A smooth flow passing around a given profile produces

vortices, alternatively on the upper and lower sides, and

induces forces perpendicular to the wind direction. Wind

turbulence normally reduces the intensity of vortex shed-

ding. The frequency of the exciting force is given by:

N ¼ US

H
ð57Þ

where U is the wind velocity in m s71,H is the profile depth

in metres, D is the cable diameter, and S is the Strouhal

number which is about 0.18 for a circular cylinder. Vortex

shedding can excite a cable in mode k, whose period is Tk,

when the wind velocity has a critical value of:

Uc ¼
D

0:18Tk
ð58Þ

The so-called cable-galloping which appears, according to

new theories, to be a specific type of vortex shedding will be

evoked later in this paper. As shown by Matsumoto et al.

(1999), axial vortices flow along the stay cable, enhance

every third classical Von Karman vortex, in oblique winds.

This produces an increased excitation, perpendicular to the

wind flow, with a frequency equal to one-third of the

classical shedding frequency:

N ¼ US

3D
ð59Þ

The Strouhal number is reduced to about 0.15 in these

situations, leading to a critical velocity of:

Uc ¼
3D

0:15Tk
ð60Þ

to produce an excitation on mode k.

Due to the very small diameter of stay cables, the critical

velocities corresponding to classical vortex shedding, as

given by equation (58), are very low, and associated with

very low wind energy. The only example of significant

cable vibrations due to direct and classical vortex shedding

to the author’s knowledge took place at the Saint-Nazaire

Bridge.

One stay cable suffered from high frequency vibrations,

in modes 25 to 45. It is worth noting that the same cable

was a replacement for an existing stay cable which had

shown some signs of fatigue and later broke (figure 4). The

cable accelerations and the wind velocity were recorded and

analysed by Virlogeux and Arcadis. A good correlation

between the wind velocity, which varies with turbulence

and altitude along the stay cable, and the frequency of the

extreme response was demonstrated (figure 24). It should

be noted, however, that not all frequencies could appear

due to the position of accelerometers.

Cable vibrations of cable-stayed bridges 147



6.2 Wake effects

There are many different types of wake effects. The cables

of a cable-stayed bridge can be in the wake of a structural

element, or of construction equipment. The classical

condition is for bridges with two planes of cables under

oblique winds. Some downstream cables are in the wake of

the upstream leg of the pylons; especially with H-shaped

pylons. The wind flow is disturbed by these pylon legs,

which increases the turbulence with very specific distribu-

tions of excitations that can produce vibrations in

downstream cables (figure 25). The critical velocity is

evidently given by the Strouhal formula corresponding to

the production of vortices around the waking element:

Uc ¼
H

STk
ð61Þ

where H is the transverse dimension of the element, S its

Strouhal number, and Tk is the period of the cable excited

in mode k.

Through private communications with Jorg Schlaich, the

author learned that such specific vibrations have been

observed at the Evripos Bridge in Greece. It is also worthy

of note that some short stay cables at the Normandie

Bridge vibrated once during construction in the wake of a

pylon leg. The author considers this information, although

not scientifically recorded, credible even if the shape of the

pylons, an inverted Y, may limit such effects.

Another condition may be induced with the wake of the

whole cable system, when the wind is almost parallel to the

bridge. The upwind cables could disturb the flow and

produce an excitation of downwind cables. However, due

to the frequency of vortex shedding on cables, the author is

of the opinion that such vibrations may not develop for

large wind velocities.

A more complex phenomenon is produced in twin cables

as frequently used in Japan to limit the cable size. Cables

are arranged in pairs of parallel cables at close distance,

usually few diameters apart, anchored at the same level in

the tower and deck. The second cable, shown in figure 26, is

in the wake of the first one and then excited by the vortices

produced on the first cable. According to previous results,

this is not critical. However, a specific interaction develops

between the two cables; where the existence of the first

cable disturbs the flow around the second, and the

movements of the second cable alter the flow around the

Figure 24. Saint-Nazaire Bridge’s stay cables 19 and 32 downstream. Correlation between frequency and wind velocity at

deck level (Virlogeux and Arcadis).

Figure 25. Wake of a pylon leg. Figure 26. Wake effect in twin cables.
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first. This phenomenon decreases, and disappears when the

distance between the two cables increases or when they are

not exactly parallel.

The same phenomenon develops with much more com-

plex aspects when several cables are grouped; for example,

to constitute a strong backstay. This is why the author

recommended connecting the numerous cables forming the

backstays of the Erasmus Bridge when his opinion was

sought regarding the design of the bridge (figure 27).

It is worth noting that a specific problem of the same type

exists when cables are made of a bunch of parallel

individually protected strands, a technique developed by

Freyssinet. Due to aerodynamic interaction between

strands, external strands can move outwards and then

inwards, shocking the central strands; and finally producing

some limited global vibration of the cable. This movement,

which is called breathing of strands, and the resulting

shocks, produce an important and disagreeable rattling

noise. These vibrations have been one of the main reasons to

encase individually protected strands in an external duct.

6.3 Buffeting

Buffeting has a direct effect on cables as on any flexible

structure. These effects grow with the wind velocity, a bit

higher than the square of the wind velocity. The buffeting

effects, however, do not appear dangerous except if

buffeting can produce shocks in aiguilles (or cross cables),

if any and when they have received low tensions. Except in

this last case, it seems logical that cables are moved by high

winds. The effect is not as critical as with other phenomena

which are more related to instability, with large vibrations

for low or medium winds. Aerodynamic damping on cables

helps limiting vibrations, as well as high tensions under

permanent loads. It should be noted that buffeting can

produce aerodynamic instability in bridges with two

parallel planes of stay cables (Davenport 1994). A gust

striking the upwind plane of stays will strike the downwind

stays at a time B/U later, where B is the distance between

the two planes of cables. If the difference corresponds to

half a cycle of torsional movement of the deck, whose

period is Tt, instability can take place. The critical velocity

is then given by:

Uc ¼
2B

Tt
ð62Þ

6.4 Aerodynamic stability

Different types of aerodynamic instability can develop.

When cables do not have the ‘perfect’ shape of a circular

cylinder, their shape may produce some cable galloping. It

was shown earlier that drag forces can be very high for long

spans. To reduce drag forces on cables, some engineers

proposed to group the individually protected strands of

the Normandie Bridge in a flat hexagonal arrangement

(figures 28 and 29).

However, this would have produced high lift forces in

oblique winds and possible galloping effects. In addition, it

appeared that the irregular shapes produced by the

different strands increase drag forces to very high values.

Therefore the author recommended the installation of

strands in circular ducts (figure 30).

Cable-strand effects in locked coil cables and even more

in large strands with no external duct can produce specific

vibrations. Evidently, the pitch length has a significant

influence, since the installation of small helical filets on

cable ducts can be used to eliminate cable vibrations and

thus have exactly the opposite effect. Such effects may

explain the high frequency vibrations in the Saint-Nazaire

Bridge, but this has not been proved to date. The reasons

for these very specific vibrations are still unclear. Ice on

cables may be dangerous also, as on electric lines, since ice

may change the shape of cables and produce instablility.

This is why all elements which can retain water on cables

must be eliminated in cold climates. As recent as December

2003 and January 2004, major vibrations at the Oresund

Bridge were related to this phenomenon. This is believed to

be the case, but the vibrations mainly affected two stay

cables (numbers 8 and 10) and not all the longer ones as

would be expected logically. In addition, towers are

transversally flexible, and may contribute to a parametric

excitation of some stay cables.

As mentioned earlier, in studying cable vibrations, the

so-called cable-galloping in oblique winds has to be evoked.

Stay cables appear elliptical in oblique winds as shown

earlier, but this cannot produce any aerodynamic instabil-

ity, since the angle of attack is always equal to zero.

Equation (45) and section 4.4 clearly indicate that there is

no unstable factor in the aerodynamic force. It has been

Figure 27. Six backstays at the Erasmus Bridge attached

to avoid wake effects.
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shown, however, that when the wind is oblique, with an

azimuth angle, b, different from zero, inclined stay cables

can suffer from vibrations which have the characteristics of

aerodynamic instability, or vertical galloping (Saito et al.

1994). This galloping is influenced by the Strouhal number,

Sc, given by:

Sc ¼
2mx
rD2

ð63Þ

where r is the volumetric mass of air, x is the damping

coefficient in the cable (ratio to critical), m is the lineic mass

of the stay cable and D is the cable diameter. Japanese

researchers, who have been followed by the PTI Recommen-

dations in the United States (PTI 2001), consider that there is

no risk of galloping in oblique winds on mode k when the

wind velocity is below a critical value, which is given by:

Uc ¼
CD

Tk

ffiffiffiffiffi
Sc

2

r
ð64Þ

where C is a constant equal to 40 and Tk is the stay cable

vibration period at mode k.

The author does not consider this formula as a criterion.

According to equation (64), almost all stay cables would be

prone to galloping, if Sc and Tk are replaced by their

expressions, equations (63) and (13), which results in:

Uc ¼ CD
k

2L

ffiffiffiffi
F

m

r ffiffiffiffiffiffiffiffiffi
mx
rD2

s
¼ kC

2L

ffiffiffiffiffiffi
Fx
r

s

In the above formula, neither the lineic mass nor the cable

diameter influences the critical velocity.

For a stay cable made of parallel 7 wire strands, the

tension under permanent loads can be evaluated by:

F ¼ nAgsGUTS

where n is the number of strands, A is the area of the strand

section (m2), sGUTS is the guaranteed ultimate tensile stress

(for example 1770 MPa) and g is a coefficient corresponding

to the level of permanent stress in the cable, which normally

varies between 0.30 and 0.40 according to the bridge type.

Thus the critical velocity can be written as:

Uc ¼
C

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AsGUTS

r

s !
k

L

ffiffiffiffiffiffiffi
ngx

p

Figure 29. Aerodynamic stationary coefficients of the flat

arrangement proposed by Freyssinet, for the Normandie

Bridge, as functions of the angle of attack.

Figure 28. Flat arrangement of stay cables proposed by

Freyssinet for the Normandie Bridge.
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when C is taken equal to 40, A=150mm2 and

sGUTS=1770 MPa:

Uc ¼ 9292
k

L

ffiffiffiffiffiffiffi
ngx

p
As g varies between 0.30 and 0.40, one obtains:

5089
k

L

ffiffiffiffiffi
nx

p
� Uc � 5877

k

L

ffiffiffiffiffi
nx

p

To give an approximation, one can write:

Uc ffi 5500
k

L

ffiffiffiffiffi
nx

p
ð65Þ

For the first mode, the most critical, figure 30 gives the

corresponding estimates of the critical velocity as a function

of the three main parameters, the cable length, L, the

number of strands, n, and the damping coefficient (ratio to

critical), x. The damping coefficient, x, has been assumed at

three values. The value of x=0.1% corresponds to the

lowest value for modern cables made of parallel strands,

without any damping devices. The level of damping of

x=0.5%, which corresponds to the damping level con-

sidered acceptable to eliminate rain/wind induced vibra-

tions, is adopted by most designers, including the author.

Finally, the value of x=1% is demonstrated to show that

doubling the damping is not efficient. The cable length, L,

varies from 50 to 250 m to cover the classical range of cable-

stayed bridges. The number of strands, n, corresponds to

classical anchorages: 12, 19, 27, 37, 61, and 91.

The above demonstration clearly shows that almost all

stay cables would appear unstable according to the

proposed criterion, and that even doubling the damping

ratio is inefficient.

In the paper by Saito et al. (1994), cable vibrations were

attributed to the axial flow along the cable. This is more likely

as most of the tests recorded in the paper correspond to a

wind in the plane of cables, b=908with the notation adopted
in this paper. In addition, only two results (with a star)

correspond to a Scruton number higher than 25. It should be

noted that the definition cited inMatsumoto et al. (1994) uses,

md/rD2 for the Scruton number, which is slightly different

from the definition used in this paper; namely, 2md/rD2.

In a more recent paper, Matsumoto et al. (1999) develop

the following convincing theory. When the cable is

perpendicular to the wind (b=0), the wind flow produces

vortex shedding in agreement with the Von Karman

formula, given by equation (57) of this paper:

N ¼ US

D

where N is the shedding frequency, in Hz, S is the Strouhal

number, U the wind velocity, and D the cable diameter. The

Strouhal number for a circular cylinder is equal to 0.18.

When the wind is oblique to the cable, the Strouhal number

decreases and becomes equal to 0.15 (for b4 20 or 308).
Axial vortices flow along the stay cable in oblique winds,

enhancing every third classical Von Karman vortex. This

phenomenon produces an increased excitation, perpendi-

cular to the wind flow, with a frequency equal to one-third

of the classical shedding frequency:

Nc ¼ US

3D
ð66Þ

Figure 30. Normandie Bridge’s final arrangement of stay

cables.
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and for multiple periods:

Ni ¼
US

3iD
for i ¼ 1; 2 . . . n ð67Þ

The corresponding reduced velocities are given by:

URci ¼
U

Ni
¼ 3i

S

Replacing S by 0.15 shows that URci takes the successive

values 20, 40, 60, 80, . . . , as shown by Matsumoto et al.

(1999). This result is satisfactory, since it is believed that the

energy produced by this enhanced vortex shedding is

limited, so that vibrations might be controlled by some

increased damping, in contradiction with equation (64).

It has come to the author’s knowledge, during the writing

of this paper, that the U.S. Federal Highway Administration

(FHWA) sponsored a study devoted to this problem (FHWA

Report No. RI98-034 RDT05-004, 2005). The study was

conducted by a team led by HNTB Corporation, which

concluded that dry cable-galloping cannot occur unless the

level of damping is very low. This confirms the author’s

opinion, which is more based on practical experience.

The last type of aerodynamic instability is directly

produced by the drop in the drag coefficient of circular

cylinders when the Reynolds number reaches the critical

value. Limiting the analysis to perpendicular winds, it is

supposed that the cable vibrates in the wind direction with

a velocity of vJ(t); the relative velocity is then (figure 23):

Vr ¼ U� vJðtÞ
The drag force can be written as:

F ¼ 1

2
rDðU� vJÞ2CdðU� vJÞ

The first order is then developed as follows:

F ¼ 1

2
rDU2CdðUÞ �

1

2
rDU2 2CdðUÞ þU

dCd

dU
ðUÞ

� 	
vJ
U

The second factor is a damping factor, except when the

derivative of the drag coefficient becomes negative:

dCd

dU
< � 2CdðUÞ

U
ð68Þ

Then aerodynamic forces tend to accelerate vibration and

may produce the ‘drag crisis’.

Referring to section 5.2, one can evaluate the damping

coefficient for transverse vibrations in mode k (ratio to

critical) by:

xk ¼
rUD
2mok

CdðUÞ þ
U

2

dCd

dU
ðuÞ

� 	
ð69Þ

A drag crisis will take place when the total damping

coefficient, including the stay cable internal damping,

becomes negative:

xt ¼ xþ rUD
2mok

CdðuÞ þ
U

2

dCd

dU
ðuÞ

� 	
< 0 ð70Þ

The author has never observed such a possibility for tested

cable ducts, but the following is worthy to note. In any

case, for Reynolds numbers in the critical, range of

100,000 – 200,000, that is for wind velocities between 12

and 18 m s71, the drop in drag coefficients produces a

strong reduction of aerodynamic damping of stay cables

and favour cable vibrations. Most probably introducing

some relief on cable ducts limits the drop of the drag

coefficient, as this is the case with the Freyssinet ducts

which have been tested by the CSTB. This also contributes

to limiting cable vibrations, even when there is no rain as

was observed during the erection of the Normandie Bridge.

6.5 Parametric excitation

Vibrations of stay cables may be induced by the movements

of their anchorages, either on the deck or in the towers.

Stay cable vibration could also occur due to the structural

Figure 31. Critical wind velocity, from the criterion proposed for galloping, as a function of the three parmeters, L, n, and x.
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vibrations of deck and towers which can be produced by

vortex shedding on deck or tower, buffeting or traffic. The

analysis of a cable excited at one of its two ends must be

divided into two different categories for better under-

standing. This is also essential in separating the transverse

excitation, perpendicular to the cable direction, from the

longitudinal excitation, in the direction of the cable.

Extensive theories have been developed to describe the

above behaviour. In the following, only straight and

horizontal cables will be considered for simplicity.

Considering transverse vibrations produced by the

transverse movement at anchorage B:

yBðtÞ ¼ Asinot

one can write that the displacement of the typical point,

Y(x,t), as the sum of the solid movement produced by the

moving anchorage, y0ðx; tÞ, and the relative movements,

y(x,t) (figure 32), where y0ðx; tÞ is given by:

y0ðx; tÞ ¼
x

L
A sinot

Considering the cable tension constant, the local

dynamic equilibrium of the cable gives:

F
d2yðx; tÞ

dx2
¼ m

d2Yðx; tÞ
dt2

¼ m
d2yðx; tÞ

dt2
þm

d2y0ðx; tÞ
dt2

The variables, x and t, can be separated to render:

yðx; tÞ ¼
Xn
i¼1

sin
ipx
L

yiðtÞ

Then, multiplying by sin kpx/L, and carrying out the

integration between 0 and L, the generalised coordinate

corresponding to mode k is given by the equation:

y00kðtÞ þ o2
kykðtÞ ¼ �

2

kp
d2yB
dt2
¼ 2o2A

kp
sinot ð71Þ

By direct comparison with the behaviour of a simple

oscillator subjected to a harmonic force, one concludes that

the amplitude of the permanent movement of the cable, for

the mode k, is given by:

Ak ¼ A
2o2

kpo2
k

HðoÞ ð72Þ

where H(o) is the classical amplification factor, figure 33,

given by:

HðoÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o

ok

� �2� 	2
þ 2x o

ok

� �h i2s ð73Þ

with x being the damping coefficient (ratio to critical) corres-

ponding to the second term to be introduced in the equation:

2xoky
0
kðtÞ

It is clear that significant vibrations can only develop

when periods are very close, as shown by equations (69)

and (70), which can be condensed as follows:

kAk

A
¼ 2

p
o
ok

� �2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� o
ok

� �2� �2
þ 2x o

ok

� �� �2" #vuut
ð74Þ

equation (74) is displayed in figure 34 and table 2.
When the periods are different by less than 2%, the

transverse displacement of an anchorage produces cable

vibrations with amplitude which is at least seven times

larger for mode 1. The amplitude should be divided by k for

Figure 32. Analysis of transverse cable excitation.

Figure 33. The amplification factor as a function of o/ok.

Figure 34. Vibration amplification in a stay cable.
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the typical mode. Therefore 10 cm at the anchorage

corresponds to at least 70 cm for cable vibration in mode

1, and to 35 cm in mode 2, etc. The most interesting result is

that damping cannot reduce this effect, except at peak. In

other words, the amplification is practically independent

from the damping coefficient. This is a very significant

consideration in the design process; if some stay cables are

affected by parametric excitation, increasing damping

would not be sufficient.

Now, the longitudinal excitation produced by the move-

ment of the same anchorage in the cable direction, uB(t), is

considered (figure 35):

uBðtÞ ¼ Asinot

Here, the tension variation produced by the cable

elongation should be considered:

DL ¼
Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ duðx; tÞ

dx

� �2
þ dyðx; tÞ

dx

� �2s
dx� L

The displacement of a typical point is given by u(x,t), and

y(x,t). It is clear that the only first-order term will come

from the longitudinal displacement and therefore:

DL ¼
Z L

0

1þ duðx; tÞ
dx

� �
dx� L ¼ uBðtÞ

From the above relationship, one obtains:

DF ¼ ES

L
A sinot

The following equation is given by the cable dynamic

equilibrium:

ðFþ DFÞ d
2yðx; tÞ
dx2

¼ m
d2yðx; tÞ

dt 2

By separation of the variables and using equation (10),

one obtains:

y00kðtÞ þ o2
k 1þ ES

FL
A sinot

� �
ykðtÞ ¼ 0 ð75Þ

The above formula, incorporating the damping factor, can

be transformed into a classical Mathieu –Hill equation

(Clément and Cremona 1996). It can be shown that there

are two different types of resonance with a longitudinal

excitation. Resonance that takes place at the same period,

or frequency, is easily understood when considering the sag

effect. The main type of resonance occurs with a period

which is double of the excitation, or half of the frequency.

Figure 36 shows the two instability zones, corresponding to

the excitation period, T, or its double, 2T. The main

resonance modes for longitudinal excitation are displayed

in figure 37.

More sophisticated analyses can be developed introdu-

cing the sag effect produced by the cable weight, and the

elongation produced by the transverse displacement.

However, the nature of the results would not vary.

Figure 35. Analysis of a longitudinal cable excitation.

Figure 36. Zone of instability with a longitudinal

excitation.

Table 2. Equation (74) at different levels of damping.

x=0.001 x=0.002 x=0.003

0.94 5,468 5,466 5,462

0.96 8,118 8,11 8,098

0.98 16,056 15,998 15,902

0.99 31,834 31,376 30,68

0.994 52,492 50,496 47,622

0.998 142,524 112,708 88,432

1.000 318,31 159,154 106,104

1.002 142,182 112,37 88,134

1.006 52,17 51,64 47,28

1.01 31,514 31,052 30,324

1.02 15,738 15,68 15,58

1.04 7,8 7,792 7,78

1.06 5,15 5,148 5,144
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6.6 Rain and wind-induced vibration

One of the most significant problems is the phenomenon

caused by rain and wind interactions, as demonstrated by

many researchers (Hikami and Shiraishi 1988, Yamaguchi

1990, Flamand 1994, Saito et al. 1994, Geurts and

Staalduinen 1999). In oblique wind conditions that tend to

lift the cable, and in rainy weather, two water rivulets may

run down the surface of the cable—at the lower part of the

duct, and at the upper part of the duct where the rivulet has

a dynamic equilibrium. The equilibrium is achieved under

the combined effects of gravity, capillary and wind forces

which oppose gravity forces when the angle of azimuth of

the wind is in the convenient range. The water rivulets

change the effective shape of the cable, and thus aero-

dynamic forces; and they move as the cable oscillates,

causing cyclical changes in the aerodynamic forces which

increase oscillations in given conditions. This type of

instability is directly dependent on the existence of the

upper rivulet. Without the upper rivulet, there is no cable

vibration, and vibrations develop when the water rivulet

flows in a critical zone of the upper surface of the cable.

From the literature cited above, rain and wind-induced

vibrations can develop in different weather conditions. The

rain intensity is not of major concern; a strong drizzle can

produce these vibrations. Heavy rain does not seem so

unfavourable, because the quantity of water could exceed

the capacity of the cable to maintain a water rivulet on its

upper surface. The vibrations have mainly been observed

on cables with ducts in high-density polyethylene (HPED).

It is worthy to note that the capillary action plays a role

and also the nature of ducts; however, it should be noted

that most cables are now placed in HDPE ducts. In

addition, the vibrations which occurred during the erection

of the Brotonne Bridge in 1977 – 1978, before the installa-

tion of dampers at the lower anchorages, could be

attributed to the combined effects of rain and wind. The

ducts were painted steel pipes; the same could be said for

the bridge at Wandre over the river Meuse, where ducts are

in stainless steel. The tests made by the CSTB for the

Normandie Bridge reproduced some of the Japanese results

(figure 38). If the ducts are smooth, the upper rivulet cannot

exist and the cable oscillations do not develop. Jacques

Biétry and Olivier Flamand had to ‘dirty’ the cable surface,

with some carbon soot, to install the water rivulet and the

corresponding vibrations (figure 39).

The diameter of ducts for which such vibrations were

observed is in the range of 140 – 225mm. Wind tunnel tests

in Japan were made for relatively smaller cables. However,

some vibrations observed on bridges (such as for the Glebe

Island and Erasmus bridges) correspond to larger dia-

meters. These cable vibrations only develop for oblique

winds, with an angle of azimuth between 30 and 808
according to some authors; or between 20 and 608
according to others. It should be noted that vibrations

mainly take place due to winds which tend to lift the cables.

Rain and wind-induced cable vibrations have been

observed for wind velocities between 6 and 18 m s– 1

according to some authors. The majority of vibrations

correspond to wind velocities between 8 and 12 m/s.

Referencing the reduced velocity, UR, given by:

UR ¼
U

ND
ð76Þ

Figure 38. Stay cable tested by the CSTB in the Jules

Verne climatic wind tunnel.

Figure 37. Main resonance modes for longitudinal

excitation.
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where U is the wind velocity, N is the vibration frequency,

and D is the duct diameter, the vibrations develop between

20 and 90 m/s (Hikami and Shivaishi 1988, Saito et al.

1994, Flamand 1994). These values are generated for

Reynolds numbers in the range of 66104 and 26105.

The frequency of the observed vibrations generally ranges

between 1 and 3 Hz according to some investigators, and

between 0.60 and 3 Hz according to others. Most frequent

vibrations develop at about 1.0 Hz. Recorded vibrations

are mainly vertical, in perfect agreement with the idea that

these vibrations come from the correlation between the

vertical movements of the cable and the displacements of

the water rivulets on the cable surface. Transverse move-

ments could also be associated with the vertical movements.

The amplitude of vibrations which have been produced in

wind tunnels is about twice the cable diameter. However, in

some bridges, vibrations could reach several metres, as was

observed on video records at the Burlington Bridge and the

Glebe Island Bridge. According to some information,

the extreme case of cable vibrations took place at the Second

Severn crossing. This might have been the case; probably

dueÂto other reasons of cable vibrations that amplified the

combined effects of rain and wind. Figure 40 displays the

vibration amplitude as a function of the wind velocity.

These vibrations mainly occur for bridges built in a

flat topography, or over a wide waterway. It is interesting

to note that heavy wind turbulence would prevent or

limit the organized vibrations of water rivulets, and thus

cable vibrations.

7. Cable/structure interaction

7.1 Structural analyses

Classical analyses of cable-stayed bridges are performed

with linear models in which stay cables are represented by

straight elastic members, without inertia, and without

Figure 39. Preparation of the test, with carbon soot on

the duct.
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bending moments at their anchorages, in deck or towers.

Their mass is introduced in the structure by halves at their

two anchorages as shown earlier. As a consequence,

vibration modes are separated into two independent

categories. The first is ‘structural’ modes, which are given

by the dynamic linear analysis of the structure, in which stay

cables are modelled by elastic bars without mass. The

second category is ‘cable’ modes, evaluated by an indepen-

dent analysis of stay cables, one by one supposing that its

two anchorages are fixed. This separation is extremely

efficient for the structural analysis, allowing for a simple,

rapid and safe evaluation of forces. It is also extremely

efficient for detecting possible interactions between stay

cables and the structure, when some ‘structural’ frequencies

are close to some ‘cable’ frequencies. Parametric excitation

of the corresponding stay cables from the structure

vibrations is very likely. As demonstrated in section 6.5,

the amplitude of the stay cable vibrations may be very high.

It is clear, however, that there is an interaction between the

‘structure’ and the stay cables. It is only possible to have a

precise evaluation of this interaction with a more complex

model in which stay cables are represented with their mass

distributed along their length; a model which will also verify

sag effects in stay cables. Such computations lead to a very

high number of vibration modes. For instance, the author

had to analyse 300 modes for the Normandie Bridge in

order to identify the main ‘structural’ modes in the complete

series. It is therefore necessary to develop some techniques

to recognise the different types of modes. The identification

is only possible when all data corresponding to the following

three analyses are available:

. the classical linear analysis, leading to the structural

modes,

. the analysis of the stay cable frequencies, supposing

that they are independent, and

. the detailed dynamic analysis with stay cables repre-

sented with their distributed mass.

The frequencies and modes of the detailed dynamic analysis

should be compared to the results of the first two analyses.

The key elements of comparison are the values of

frequencies, the mode shapes, the generalised masses and

above all the number of modes, corresponding to ‘degrees

of freedom’. If one considers the example of a bridge with a

unique tower, provided with two planes of stay cables and

with backstays different from the stay cables in the main

span, the following modes have to be identified in the

detailed analysis.

. Pure ‘structural’ modes, when they are completely

separated from ‘cable’ modes; in these modes, of high

generalised mass, some stay cables may move, but not

very much.

. Pure ‘cable’ modes, but in groups. In this example, for

each given pair of stay cables, either in the main span or

in the side span, and for each mode order k, one should

identify:

– two lateral modes, which can be separated in a

symmetric and an antisymmetric mode if the

structure is perfectly symmetrical, and

– two vertical modes which can be separated in the

same way; with a slightly different frequency for

mode 1 due to sag effects, and with almost the same

frequency for higher modes, finally leading to a

group of four modes with the lateral modes. These

modes have a very limited generalised mass and

show large displacements of stay cables, with no or

very small displacements of deck and towers.

. Mixed modes, when a group of cable modes, two or

four in this example, depending on the mode order of

the cables, interacts with a structural mode.

The analyses performed, by Mr Nauta for the Erasmus

Bridge in the Netherlands verify this type of interaction,

between two ‘structural’ modes and four stay cables. The

first vertical vibration mode has a period, when computed

with cables modelled by simple elastic bars, very close to

the first natural period of cables 10 and 11. The

combination results in nine modes in the detailed computa-

tions made with DIANA (figure 41), with these two cables

modelled with their mass and sag effect, as shown in tables

3 and 4. Since there are in fact four cables, two cables 10

and two cables 11, vibrating vertically and laterally, each

cable of each pair has been modelled with a specific tension

evaluated from measures at the construction time. It is clear

that modes 1 – 4 correspond to lateral vibrations of cables

10 and 11, sway or balancement, and modes 5 – 9 combine

vertical vibrations of deck and cables 10 and 11. The values

of generalised masses, and the aspect of modes, show that

modes 5 and 9, but mainly 5, concentrate the larger part of

the mass. The normalisation of modes corresponds to a

larger displacement component equal to 1.0 m. Figure 9

demonstrates the nine modes combining the first structural

vertical mode and the first vibration mode of stay cables 10

and 11.

The combination of structure and cable modes can be

more complex, as shown by the combination of structural

mode 4 (sway 1) and of mode 2 in cables 10 and 11. Some

modes are only concerned with vertical cable vibrations;

sometimes limited to one cable, or vertical and lateral

vibrations of cables, with some participation of the deck

(lateral vibrations). Mode 20 is the most structural.

The author performed a similar analysis for the

Normandie Bridge, but with all the stay cables modelled

by Alain Morisset with their mass and with the aiguilles (or

cross cables). For lateral vibrations four modes were

produced in each group in the main span (as well as in
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the side spans) for each pair of stay cables, which can have

symmetrical and antisymmetrical shapes, as shown by

figure 42, the first symmetry corresponding to the long-

itudinal axis of the bridge, and the second to the transverse

horizontal axis at mid-span.

It should be noted that the precise interaction between

structure and cables cannot be predicted when frequencies

of structure and cables are almost the same, since the result

is highly dependent on the difference which cannot be

predicted with accuracy. The uncertainties in the cable

tension, or in the deck inertia, can be much higher than

needed to predict accurately the ‘combined’ modes. This is

more pronounced at the design stage than after erection

when measures can reduce the uncertainties. In this

situation, it is absolutely impossible to predict the exact

scale of the possible influence of parametric excitation

and the designer can have only two options. First, to wait

for erection, observe the real bridge behaviour and then

take proper countermeasures. Alternatively, if it is thought

that there is a major risk, the frequencies have to be

separated to ensure that parametric excitation would not

take place.

7.2 A simple interaction model

For a real structure, or in the structural analysis when the

structure is represented by a detailed model, with cables

represented by their mass and sag effect, the parametric

excitation cannot be considered as an excitation of the

cable ends. It becomes necessary to develop a direct

analysis of the global structure vibration, excited by vortex

shedding, buffeting or traffic. Clearly, the analysis becomes

much more difficult and needs the use or the development

of specific software. The author analysed the influence of

Von Karman vortices on the pylons of the Millau Viaduct,

and the possible parametric excitation of the two longer

stay cables in each cantilever. Vincent de Ville built a finite

element model of a pylon with a unique stay cable which

demonstrated two results. First, when there is a perfect

identity between the independent vibration periods of tower

and cable, the interaction separates the two modes into a

symmetrical one and an antisymmetrical one with different

frequencies. The influence of vortex shedding on the system

is much lower than the effect of parametric excitation on

the stay cable derived from the estimated movement of the

pylon, which is reduced.

To control these results, it is proposed to use a simplified

model with two degrees of freedom. The model is composed

of a pylon, a stay cable of length L, at an angle a with the

horizontal and a tension force, F (figure 43).

Assume that the pylon has a mass M0, concentrated at

the anchorage of the stay cable, and rigidity, R0. The total

mass of the stay cable, mL, is introduced at both

anchorages and at mid-span; in the tower mL/4, at the

fixed lower anchorage mL/4, and at mid-span mL/2.

The anchorage of the stay cable at the pylon has a lateral

displacement, Y, while the lateral displacement correspond-

ing to the node at mid-span of the stay cable is given by

ðY2 þ yÞ. The relative movement, y, and the angles, y and j
are shown in figure 44, where:

tgy � y ¼ Y

L cos a
; tgj � j ¼ 2y

L cos a

The horizontal transverse force produced on the pylon by

the stay cable is given by:

F cos a sin ðy� jÞ ¼ F

L
ðY� 2yÞ

Table 3. Simplified analysis of structure and stay cables.

Structural modes Cable modes

Mode Period Type Cable Period Type

1 2.2173 Vertical 1 11 west 2.479 Lateral 1

4 1.2071 Sway 1 10 west 2.448 Lateral 1

11 west 2.2428 Vertical 1

10 west 2.1994 Vertical 1

11 west 1.2392 Lateral 2

Vertical 2

10 west 1.2240 Lateral 2

Vertical 2

Table 4. Detailed computations of two cables modelled with
their mass and sag effect.

Mode Period

Generalised

mass (104) Type

1 2.4361 1.3298

2 2.4337 1.2962 Lateral modes of cables

10 and 113 2.4213 1.4280

4 2.4195 1.3922

5 2.3436 6.2036

6 2.2528 2.0644 Vertical modes of deck

and cables 10 and 117 2.2114 2.6274

8 2.1988 1.9332

9 2.1277 3.4317

12 1.2300 4.3706

13 1.2167 1.7689

14 1.2167 1.4774 Mainly cable vibration

with small deck

vibration (modes 12–16)

15 1.2161 2.2752

16 1.2133 3.4686

17 1.2098 1.6597

18 1.2095 1.3885

19 1.2079 3.0091

20 1.1869 10.501 Transverse deck and cable

vibration

158 M. Virlogeux



Figure 41. The nine modes combining the first structural vertical mode and the first vibration mode for stay cables 10

and 11.
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The tension in the stay cable produces a force in the node at

mid-span given by:

2F cos a sinj ¼ 4F

L
y

The equilibrium of the central node of the stay cable leads

to the equation:

mL

2

Y00ðtÞ
2
þ y00ðtÞ

� �
¼ � 4F

L
yðtÞ

This can be reduced to:

1

2
Y00ðtÞ þ y00ðtÞ þ o2yðtÞ ¼ 0

where o is the pulsation of the cable mode, which can be

written as follows:

o2 ¼ 8F

mL2

The pylon equilibrium is given by the equation:

M0 þ
mL

4

� �
Y 00ðtÞ þ R0YðtÞ ¼ �

F

L
½YðtÞ � 2yðtÞ�

In turn, this can be reduced to:

Y 00ðtÞ þ o0i
2
YðtÞ �mLo2

4M
yðtÞ ¼ 0

with:

o0i
2 ¼

R0 þ F
L

M0 þ mL
4

and:

M ¼M0 þ
mL

4
¼ mi

½jiðhÞ�
2
�mL

4

The parameter, mi, is the generalised mass of the

pylon mode in the structure evaluated from a linear

analysis. It automatically includes half the weight of the

stay cable; where ji (h) is the modal transverse

displacement of the pylon at the anchorage level. The

Figure 41. (continued )
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pulsation of the pylon mode, oi, which includes the stay

cable pulling effect, is then given by:

o2
i ¼

R0 þ F
L

M0 þ mL
2

From the above expression, one obtains:

o0i
2 ¼ 1þ mL

4M

� �
o2

i ð77Þ

The two equilibrium equations can be grouped as

follows:

1 0

1

2
1


















Y 00

y00














þ

o0i
2 �mLo2

4M

0 o2
















Y

y














 ¼ 0

The eigenvectors,



 ab



, should be found; such that:

Y 00

y00










 ¼ �O2 Y

y










 ¼ �O2 a

b












Figure 43. Simplified model for the interaction between

the tower and stay cable.

Figure 44. Schematic of a simplified interaction model.

Figure 42. Symmetry of lateral cable modes at the Normandie Bridge.
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The result is expressed by:

O ¼ 1ffiffiffi
2
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
o0i

2 þ
�
1þ mL

8M

�
o2

	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
o0i

2 þ
�
1þ mL

8M

�
o2

	2
� 4o0i

2o2

svuut
ð78Þ

Equation (78) clearly demonstrates the separation of the

two modes. The closest solutions are obtained at resonance

when:

o ¼ o0i

The solutions are then given by:

O ¼ oi 1þ mL

4M

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mL

16M

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL

8M
þ mL

16M

� �2svuut
ð79Þ

8. Countermeasures

In this section, three different solutions will be presented to

eliminate or reduce cable vibration; namely, increased

damping, use of shaping ducts, and installation of cross

cables.

8.1 Increased damping

The classical solution is to increase damping in cables, as

was done for the Brotonne Bridge and the bridges at

Wandre and Ben Ahin in Belgium, with the installation

of hydraulic dampers at the lower anchorage of cables.

The most efficient systems are made of two dampers at an

angle transversally, as for the Brotonne Bridge and the

Iroise Bridge over the river Elorn between Plougastel and

Brest (figure 45). Some suppliers tried to design dampers

of a much smaller size, installed as rings between the cable

proper and a reservation pipe imbedded in concrete, or

extending the steel or concrete structure. These ‘ring

dampers’ were just a neoprene ring in the first applica-

tions, such as initiated by VSL. Much more efficient

systems have been developed with viscous products, as

those used by Freyssinet for the Vasco de Gama Bridge

(figure 46) and by other suppliers

The design of dampers needs a full paper, which should

include the definition of the dampers’ rigidity and

damping characteristics to produce the desired damping

coefficient at the desired frequencies, and temperature.

Suppliers usually present design criteria or diagrams,

which are generally built in such a way to protect the

supplier’s know-how, and therefore they cannot be fully

understood by bridge engineers.

An increased damping is efficient to reduce almost all

types of cable vibration, except for parametric excitation as

demonstrated earlier. From the Japanese literature, it is

Figure 45. A damper at the Iroise Bridge over the River

Elorn.
Figure 46. A damper at the Vasco de Gama Bridge

(photo courtesy of Freyssinet).
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considered that damping can eliminate rain and wind-

induced vibrations when the damping coefficient (ratio to

critical) is higher than 0.5%, or when the logarithmic

decrement is higher than 3%. The efficiency of the dampers

depends on their location: they have to be at some distance

from the anchorage; external hydraulic dampers have to be

as perpendicular to the stay cable as possible. The dampers

shown in figure 47 could not prevent significant vibrations

since they were close to the anchorage, and at an

unfavourable angle.

8.2 Shaping ducts

The second type of remedy for cable vibrations has been

developed recently in Japan, and for the Normandie Bridge

with a different pattern. It consists of shaping ducts to

eliminate rain and wind-induced vibrations. In Japan,

the ducts of the Higashi-Kobe Bridge received deep long-

itudinal channels to drive water down without possible

transverse movements (figure 48). The drawback is a

dramatic increase in the drag coefficient, from 0.50 or 0.60

for overcritical values of the Reynolds number to about 1.35.

The problem of rain and wind-induced vibrations was

questioned for the Normandie Bridge by the Danish

Contractor Monberg and Thorsen and its consultant Cowi.

Tests were organised in the Jules Verne climatic wind

tunnel of the CSTB, at Nantes, to compare different

possible solutions. The selected solution, which has been

patented by Freyssinet, consists of providing the ducts with

two helical filets, only 1.3mm deep, with a pitch length of

60 cm each (figure 49). These helical filets destroy the

coherence of the vibrations of the water rivulets flowing

along the ducts and thus cable vibrations, as suggested by

the Danish Maritime Institute. The author insisted on the

limitation of the drag coefficient, to limit wind forces on the

bridge. With the 1.3mm deep filets, the drag coefficient only

reaches 0.63. It also appears that the drag coefficient is

constant on a larger interval of the Reynolds number. For

the Tatara Bridge in Japan, a new type of duct shaping was

developed, with a distribution of dimples (figure 50). It

would be extremely interesting to observe the performance

of this new design, particularly since the Tatara Bridge has

no cross cables.

Figure 47. Example of dampers installed too close to the

anchorage, which could not prevent cable vibrations.

Figure 48. Longitudinal channels of the ducts at the

Higashi-Kobe Bridge.
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As mentioned earlier, these different types of

duct shaping have been developed to prevent rain and

wind-induced vibrations. Nevertheless, when the ducts

were installed on the Normandie Bridge cables, sooner

than expected to stop breathing of strands which

revealed extremely disagreeable, all cable vibrations dis-

appeared. This type of shaping may also increase

aerodynamic damping; but no test was made to check the

validity of that.

8.3 Cross cables (aiguilles)

The last solution presented in this paper is the installation

of interconnecting ropes, or cross cables. The author

proposed the French word ‘aiguilles’ to describe the cross

cables installed on the Normandie Bridge. The concept of

cross cables has first been developed to increase the rigidity

of the cable-stayed system in cable-stayed bridges with very

long spans. The idea has been proposed by Fritz Leonhardt

for his proposal for the Messina Straight crossings, but was

never used in practical applications. The first practical

application was at the Farö Bridge in Denmark (figure 51).

Some of the longer cables were prone to vibrations, that

were attributed to the combined effects of rain and wind.

The amplitude of these vibrations was much lower than

those that occurred at many other bridges. Cowi Con-

sultants proposed the use of small aiguilles, tying the longer

cables only, with no connection to the deck or pylons. The

system was successful in suppressing the vibrations;

however, after the design of the Normandie Bridge, the

author learned that one of the cross cables at the Farö

Bridge broke. The cross cables were replaced by stronger

ones, with higher tension force and the system has been

reported in satisfactory conditions.

Another application is used in the Japanese bridges,

where the cable-stayed system is made of a series of pairs of

cables. Cross cables have been installed to avoid wake

effects in twin cables. The system was used for the two

cable-stayed bridges on the Kojima-Sakaide route of the

Honshu-Shikoku project, figures 52 and 53, at the Yobuko

Bridge during construction and for other bridges later. The

system demonstrated efficiency even with a reported break

of one of the cross cables on the central line of the Honshu-

Shikoku project. The author has learned from engineers at

the Honshu-Shikoku that a series of cross cables have been

replaced afterwards by stronger cables with a higher

tension.

Figure 49. A duct of the Beaucaire Bridge with the helical

filets.

Figure 50. Dimples on the ducts of the Tatara Bridge in

Japan (photo courtesy of the Honshu-Shikoku Bridge

Authority). Figure 51. Cross-cables at the Farö Bridge.
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The last application of cross cables, reported in this paper,

has been developed for the Normandie Bridge (figure 54).

During the design of the bridge, the author noticed that the

first vibration period of cables was in the same range as the

‘structural’ vibration periods, vertical modes 1, 2 and 3. The

author therefore concluded that the deck vibrations could

initiate significant parametric excitation in the cables. The

decision was made to install aiguilles in order to drastically

change the vibration periods of cables, at least for the

vertical modes, to have them out of the range of the

structure main vibration periods (figures 55 and 56). It was

also decided to install robust cross cables with high tension

to avoid shocks during high winds. Additionally, the cross

cables were provided with high internal damping. This last

addition was inspired by the suspenders of suspension

bridges designed by Freeman, Fox and Partners, in which

ropes are made with a short pitch length providing high

damping and low fatigue resistance. Freyssinet developed a

better solution with ropes provided by Bridon. The

Freyssinet/Bridon design provides high internal damping

and a satisfactory resistance to fatigue.

Figure 52. Cross cables for the cable stayed bridges on the Kojima-Sakaide route.

Figure 53. View of the aiguilles on the Kojima-Sakaide

route.
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From this series of applications, it is shown that cross

cables can be used to eliminate or reduce different types of

cable vibrations. It must be noted that the number of cross

cables required to stop rain and wind-induced vibrations

can be high. The reason is that it is necessary to increase the

natural frequencies of cables above 3 Hz to ensure the

effectiveness of the cross cable in suppressing cable

vibrations. The number of cross cables could be reduced

if their damping effect would provide the desired effect in

reducing the cable vibrations.

Aiguilles can also be used to stop or limit cable

vibrations which appear in a bridge after construction.

Figure 54. Details of cross-cables at the Normandie Bridge.

Figure 55. Installation of the aiguilles at the Normandie

Bridge.
Figure 56. Duct and cross-cables at the Normandie

Bridge (photo courtesy of Freyssinet).
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However, this leads to changes to the cable geometry due to

the tension in the newly installed cross cables. The angle

between the deck and the cables is reduced, and the tension

in the cables is increased. At the same time, moments are

slightly changed in the deck and pylons. As a result of the

change in the angle between the deck and cables, and also

between the cables and towers, some local bending is

introduced in the cables at their connections to the deck

and towers. These effects could be limited if the cables were

properly designed, with an attachment at some distance

from the anchorage. Due to the seriousness of the problem

if bending effects reach the cable anchorage itself, this

situation should be avoided.

The author was consulted on cable vibration problems at

two large cable-stayed bridges. In one case, it has been

decided to postpone the installation of cross cables or of

any other countermeasures. It would be interesting to know

the condition of the bridge in the long term, to evaluate

the real danger of rain and wind-induced vibrations with

respect to fatigue. Cable vibrations, for the other case,

according to a wind engineering expert were produced by

the combined effects of rain and wind, or most probably by

cable-galloping under oblique winds. In other words, it was

the wind expert’s opinion that it is a case of aerodynamic

instability of cables with oblique winds. The author’s

opinion was different; although recognising the fact that the

larger cable vibrations occurred when it was raining, the

author suggested that the vibrations could have been

produced, at least partly, by deck vibrations. Deck

vibrations are induced either by vortex shedding, as evident

by the laminar winds in the same range of wind velocities,

or by buffeting in oblique winds which were observed in the

wind tunnel with a full aeroelastic model at the same wind

velocities. Nevertheless, it was agreed that the installation

of cross cables was the best solution. However, despite the

author’s recommendations, the cross cables were made of

standard auto-protected strands which have an extremely

low damping. To the author’s knowledge, no significant

cable vibrations were recorded after the installation of cross

cables. However, significant vertical vibrations of the deck

were observed. The deck vibrations were much larger than

those observed before the installation of cross cables. The

information received is that the deck vibrations were

induced by vortex shedding on the structure itself which

had been underestimated. These deck vibrations have been

produced for the same wind velocities as for the cable

vibrations observed previously, but for winds which were

almost perpendicular to the bridge. It should be noted that

the information received regarding the deck vibrations were

not properly documented. The possible differences in the

angle of azimuth, and the lack of precise documentation of

the problem precludes any serious conclusions. It is the

author’s opinion that the stay cables, by their intense

vibrations, were previously acting as dampers for the deck

movements. When cable vibrations were suppressed by the

cross cables, without the introduction of an additional

damping, the damping of deck vibrations by the stay cable

oscillations has vanished. Thus the amplitude of deck

vibrations increased significantly. The author learned that

the bridge superstructure has been equipped with baffles to

prevent its vibrations. This measure has demonstrated

satisfactory performance, though some cross cables have

later failed.

8.4 Design of cross cables

The main goal of cross cables is to change the natural

frequencies of the main cables, for vertical vibrations, in a

manner which depends on the number of cross cables and

their rigidity. The area of the cross cable cross-section and

their tension force must be carefully selected so that stresses

are acceptable under extreme effects produced by traffic, by

wind-induced vibrations in the deck and pylons, and by the

direct action of wind on cables. At the same time, the initial

tension in the cross cables must be high enough that the

tension cannot decrease to zero under the same extreme

effectsmentioned above. Of course, the systemwould remain

stable, even if computations become more complex, if some

cross cable segments become completely de-tensioned under

extreme effects; but it would produce shocks in the cross

cables segments which are de-tensioned and re-tensioned,

which could lead to cross-cable ruptures, such as those

experienced at the Farö and Honshu-Shikoku bridges. It is

therefore imperative to include the cross cables in the full

structural model of the bridge to study the effects of traffic

loads on the cross cables. It is also essential to evaluate the

effectsof theextremestructurebuffeting incrosscables.This is

not so easy, due to the fact that the softwarepackagesused for

the analysis of dynamic response to turbulent winds are not,

generally, adapted to the definition of a complete structural

Figure 57. Evaluation of wind effects on stay cables, and

cross-cables.
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model, with the mass of the stay cables and the aiguilles. A

simplified method can be developed as was done for the

Normandie Bridge. Each main vertical mode (1, 2 and 3 at

least) can be modelled by a static load, reproducing the

deflection shape and scaling the extreme modal effect for the

reference wind velocity. These static loads are introduced

separately, or combined to represent the effects of a quadratic

combination, on the complete bridge model, including cross

cables of course, to analyse the resulting tensions.

The most unfavourable wind action on cross-cables is

produced when the wind blows in the bridge longitudinal

plane (figure 57). When a plane of stays is lifted by the

wind, increasing tension in cross cables, another plane of

stays is pushed by the wind, decreasing the tension in cross

cables. The turbulent wind action is usually divided into

two parts. First, the effect of the average wind velocity,

which is a purely static action. Second is the effect of the

wind turbulence which cannot be extreme on all stay cables

at the same time and needs to be analysed considering

spatial correlation. It should be noted that it is much more

difficult to separate the dynamic effects into different

‘modes’ to be quadratically cumulative.

For the analysis of the Normandie Bridge, the author

considered that extreme effects could be evaluated from the

action of the average wind velocity multiplied by a dynamic

amplification factor of 3.0. It is worth noting that Jacques

Bietry has recently developed a more precise theory for the

evaluation of extreme effects on cross cables.
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d’excitation paramétrique appliqué aux haubans de pont. Laboratoire
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